Mass transfer modeling of asymmetric membrane formation by phase inversion

A derivation is presented of a ternary diffusion model to describe the mass transfer processes associated with the quench bath period of the phase inversion process for membrane formation. The complete governing equations, initial conditions, and boundary conditions in the casting film and coagulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 1990-07, Vol.28 (8), p.1327-1365
Hauptverfasser: Tsay, C. S., Mchugh, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A derivation is presented of a ternary diffusion model to describe the mass transfer processes associated with the quench bath period of the phase inversion process for membrane formation. The complete governing equations, initial conditions, and boundary conditions in the casting film and coagulation bath are presented. Equations for ternary chemical potentials and diffusion coefficients are consistently based on constant specific volume formulations. The model is applied to the analysis of mass transfer paths and their effects on membrane structure formation. Precipitation times are determined for given sets of conditions by superposing calculated mass transfer paths on the ternary phase diagram and observing when the miscibility gap is crossed. Comparisons are made with an earlier reported study on the membrane‐forming system: water‐acetone‐cellulose acetate (CA). Agreement between predicted and measured precipitation times is found to be excellent. The polymer film composition profile at the moment of precipitation is shown to be a useful indicator of both skin and sublayer structures, allowing distinctions to be made between conditions leading to spongelike and fingerlike morphologies. The influence of model parameters on the mass transfer paths and associated polymer profiles is also discussed.
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.1990.090280810