Molecular characterization of a hyperbranched polyester. II. Small-angle neutron scattering
A series of fractions of a hyperbranched polyester in deutero tetrahydrofuran solution were investigated by small‐angle neutron scattering. Concentrations of polymer from 2 to 5% w/v were used, and the molecular parameters were obtained from Zimm plots of the data. Second virial coefficients were po...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2003-06, Vol.41 (12), p.1352-1361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of fractions of a hyperbranched polyester in deutero tetrahydrofuran solution were investigated by small‐angle neutron scattering. Concentrations of polymer from 2 to 5% w/v were used, and the molecular parameters were obtained from Zimm plots of the data. Second virial coefficients were positive, and these values were confirmed by dilute‐solution light scattering on a small number of fractions with deutero tetrahydrofuran as a solvent. The small‐angle neutron scattering data exhibited the general features predicted for the particle scattering functions of nonrandomly branched polymers, but an exact fit of the theoretical equation to the data could not be obtained for all fractions of the hyperbranched polymer, particularly those of high molecular weight. Excluded volume effects were cited as a possible cause for this disagreement. A fractal dimension of ∼2.5 was obtained from the scattering vector dependence of the differential scattering cross section of the polymer in deutero tetrahydrofuran solution, which agreed with the scaling exponent for the dependence of the radius of gyration on weight‐average molecular weight. Hydrogenous tetrahydrofuran solutions of the hyperbranched polymer exhibited negative second virial coefficients that were attributed to isotopic influences on the thermodynamic properties of the polymer–solvent combination. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1352–1361, 2003 |
---|---|
ISSN: | 0887-6266 1099-0488 |
DOI: | 10.1002/polb.10464 |