Is corannulene a better diene or dienophile? A DFT analysis

Diels Alder reactivity of corannulene has been probed using density functional theory (DFT) at B3LYP/6‐31G* level by employing it both as a diene and a dienophile in cycloaddition with ethylene and 1,3‐butadiene as typical partners. Computations reveal that corannulene acts better as a dienophile th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical organic chemistry 2008-02, Vol.21 (2), p.146-154
Hauptverfasser: Jayapal, Prabha, Sundararajan, Mahesh, Rajaraman, Gopalan, Venuvanalingam, Ponnambalam, Kalagi, Rashmi, Gadre, Shridhar R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diels Alder reactivity of corannulene has been probed using density functional theory (DFT) at B3LYP/6‐31G* level by employing it both as a diene and a dienophile in cycloaddition with ethylene and 1,3‐butadiene as typical partners. Computations reveal that corannulene acts better as a dienophile than as a diene and as a dienophile it undergoes normal electron demand type addition with 1,3‐butadiene, and as a diene corannulene undergoes inverse electron demand type addition with ethylene. When employed as a dienophile the addition takes place preferentially in the rim position than in the spoke position due to strong steric and electronic reasons. Further in the rim addition rim exo approach is favored kinetically and thermodynamically. As a diene, corannulene shows regioselectivity for rim–spoke addition over spoke–spoke addition. Concerted type cycloadditions have been studied and the reactions are seen to take place preferentially on the convex face. The effect of substituents in butadiene on the reactivity and the reaction of butadiene–pentaindenocorannulene (an extended corannulene) system has been investigated for the most favorable rim exo positions. Copyright © 2007 John Wiley & Sons, Ltd. Diels‐Alder reactivity of corannulene has been probed using density functional theory (DFT) employing it both as a diene and a dienophile in cycloaddition with ethylene and 1,3‐butadiene as typical partners. Computations reveal that corannulene acts better as a dienophile than a diene. Increased bowl depth has increased the barrier
ISSN:0894-3230
1099-1395
DOI:10.1002/poc.1299