Early manganese-toxicity response in Vigna unguiculata L. - a proteomic and transcriptomic study
The apoplast is known to play a predominant role in the expression of manganese (Mn) toxicity in cowpea (Vigna unguiculata L.) leaves. To unravel early Mn-toxicity responses after 1-3 days Mn treatment also in the leaf symplast, we studied the symplastic reactions induced by Mn in two cultivars diff...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2008-01, Vol.8 (1), p.149-159 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The apoplast is known to play a predominant role in the expression of manganese (Mn) toxicity in cowpea (Vigna unguiculata L.) leaves. To unravel early Mn-toxicity responses after 1-3 days Mn treatment also in the leaf symplast, we studied the symplastic reactions induced by Mn in two cultivars differing in Mn tolerance on a total cellular level. Comparative proteome analyses of plants exposed to low or high Mn allowed to identify proteins specifically affected by Mn, particularly in the Mn-sensitive cowpea cultivar. These proteins are involved in CO₂ fixation, stabilization of the Mn cluster of the photosystem II, pathogenesis-response reactions and protein degradation. Chloroplastic proteins important for CO₂ fixation and photosynthesis were of lower abundance upon Mn stress suggesting scavenging of metabolic energy for a specific stress response. Transcriptome analyses supported these findings, but additionally revealed an upregulation of genes involved in signal transduction only in the Mn-sensitive cultivar. In conclusion, a coordinated interplay of apoplastic and symplastic reactions seems to be important during the Mn-stress response in cowpea. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.200700478 |