Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks
A semi‐empirical expression for predicting phase continuity and inversion in polymer blends and simultaneous interpenetrating networks (SINs) was developed and examined experimentally. A rheological model based on the volume fraction, ϕ, and viscosity, η, led to the equation \documentclass{article}\...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 1986-04, Vol.26 (8), p.517-524 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A semi‐empirical expression for predicting phase continuity and inversion in polymer blends and simultaneous interpenetrating networks (SINs) was developed and examined experimentally. A rheological model based on the volume fraction, ϕ, and viscosity, η, led to the equation
\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{{\rm \eta }_{\rm 1} }}{{{\rm \eta }_{\rm 2} }} \cdot \frac{{\phi _{\rm 2} }}{{\phi _{\rm 1} }} \cong 1 $$\end{document}
as the criteria for dual phase continuity for phases 1 and 2. This relation was evaluated for two systems: a castor oil polyester‐urethane/polystyrene SIN, and a mechanical blend of polystyrene and polybutadiene. Literature data was also examined. A gradual phase inversion was found, with a region of dual phase continuity in between. While predictions of phase continuity were confirmed for the mechanical blends, they were not confirmed for the SIN system. This was probably due to rapid gelation at the point of phase inversion. |
---|---|
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.760260802 |