Isothermal crystallization kinetics of biodegradable poly(lactic acid)/poly(ε‐caprolactone) blends compatibilized with low‐molecular weight block copolymers

The isothermal crystallization kinetics of biodegradable blends made of poly(lactic acid) (PLA) and poly(ε‐caprolactone) (PCL) compatibilized with two different low molecular weight block copolymers, that is, ε‐caprolactone/tetramethylene ether glycol and ε‐caprolactone/aliphatic polycarbonate (CB),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-03, Vol.59 (s2), p.E161-E169
Hauptverfasser: Pereira, Fabiana Massarente, Canevarolo, Sebastião Vicente, Chinelatto, Marcelo Aparecido
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isothermal crystallization kinetics of biodegradable blends made of poly(lactic acid) (PLA) and poly(ε‐caprolactone) (PCL) compatibilized with two different low molecular weight block copolymers, that is, ε‐caprolactone/tetramethylene ether glycol and ε‐caprolactone/aliphatic polycarbonate (CB), was done. Blends were prepared by melt mixing in an extruder, while isothermal crystallization kinetics and morphologies were investigated by thermal (differential scanning calorimetry) and thermo‐optical (quantitative polarized light optical microscopy [qPLOM]) quantitative methods. Data were analyzed using the Avrami equation, revealing 2D and 3D growth and simultaneous heterogeneous nucleation. The presence of low molecular weight compatibilizers, that is, 2,000 g mol−1, accelerated the PLA crystallization rate by two to threefold when compared with neat PLA, with high degrees of crystallinity (40–43%) as confirmed by PLOM images. The activation energy (Ea) showed that PCL inhibits PLA crystallization; however, the addition of block copolymers used as compatibilizers of the blends reduced Ea values, increasing the chain mobility of PLA and thus increasing the crystallization rate. POLYM. ENG. SCI., 59:E161–E169, 2019. © 2018 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.25019