Development and characterization of plasticized polyamides by fluid and solid plasticizers

Polyamides are semicrystalline polymers that are useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and improved workability of polyamides; thus, a plasticization approach that eases compounding and processing procedures and produces better...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2012-06, Vol.23 (6), p.938-945
Hauptverfasser: Belous, A., Tchoudakov, R., Tzur, A., Narkis, Moshe, Alperstein, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyamides are semicrystalline polymers that are useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and improved workability of polyamides; thus, a plasticization approach that eases compounding and processing procedures and produces better desired product properties can be utilized. Common plasticizers are high‐boiling liquid esters, but solid plasticizers also have been considered. The present research has focused on plasticization of nylon 66/6 (80/20) copolymer by using selected low molecular weight organic materials. Plasticization of the copolyamide was studied with glycerin mono stearate, benzene sulfonamide, and methyl 4‐hydroxybenzoate as the solid plasticizers and diethylhexyl phthalate as the liquid plasticizer. The materials were prepared and characterized by thermal, mechanical, dynamic, rheological, and morphological properties. The experimental results were supported by simulated polymer and plasticizer interactions using molecular dynamic simulations. Plasticization and antiplasticization phenomena were observed and discussed. The plasticizers were classified by their efficiency in reducing Tg and by modification of the other polyamide properties. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.1988