A data generation approach for surrogate models for magneto‐static simulations

In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2023-11, Vol.23 (3), p.n/a
Hauptverfasser: Niekamp, Rainer, Niemann, Johanna, Reichel, Maximilian, Schröder, Jörg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 23
creator Niekamp, Rainer
Niemann, Johanna
Reichel, Maximilian
Schröder, Jörg
description In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.
doi_str_mv 10.1002/pamm.202300119
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202300119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202300119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqWwZe0LJPgnseNlVPEntaILWEcviROC4jiyU6HuOAJn5CR1WwTsWL3RaL6n0SB0TUlMCWE3IxgTM8I4IZSqEzSjgspIEkFP_-hzdOH9W8hTwckMrXNcwwS41YN2MHV2wDCOzkL1ihvrsN84Z1uYNDa21r0_mAbaQU_26-PTT4GpsO_Mpj_Q_hKdNdB7ffV95-jl7vZ58RAtn-4fF_kyqihTKqqTKmmAQyMSBoqp0LomJQkF01KmMihOgy-BaiWSTKaMpVmTaS51WSkl-BzFx7-Vs9473RSj6wy4bUFJsd-j2O9R_OwRAHUE3rteb_9JF-t8tfpldxb-Zcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data generation approach for surrogate models for magneto‐static simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</creator><creatorcontrib>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</creatorcontrib><description>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202300119</identifier><language>eng</language><ispartof>Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</cites><orcidid>0000-0002-4708-6804 ; 0000-0002-0778-5168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.202300119$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.202300119$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Niekamp, Rainer</creatorcontrib><creatorcontrib>Niemann, Johanna</creatorcontrib><creatorcontrib>Reichel, Maximilian</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><title>A data generation approach for surrogate models for magneto‐static simulations</title><title>Proceedings in applied mathematics and mechanics</title><description>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1OwzAUhC0EEqWwZe0LJPgnseNlVPEntaILWEcviROC4jiyU6HuOAJn5CR1WwTsWL3RaL6n0SB0TUlMCWE3IxgTM8I4IZSqEzSjgspIEkFP_-hzdOH9W8hTwckMrXNcwwS41YN2MHV2wDCOzkL1ihvrsN84Z1uYNDa21r0_mAbaQU_26-PTT4GpsO_Mpj_Q_hKdNdB7ffV95-jl7vZ58RAtn-4fF_kyqihTKqqTKmmAQyMSBoqp0LomJQkF01KmMihOgy-BaiWSTKaMpVmTaS51WSkl-BzFx7-Vs9473RSj6wy4bUFJsd-j2O9R_OwRAHUE3rteb_9JF-t8tfpldxb-Zcg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Niekamp, Rainer</creator><creator>Niemann, Johanna</creator><creator>Reichel, Maximilian</creator><creator>Schröder, Jörg</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4708-6804</orcidid><orcidid>https://orcid.org/0000-0002-0778-5168</orcidid></search><sort><creationdate>202311</creationdate><title>A data generation approach for surrogate models for magneto‐static simulations</title><author>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Niekamp, Rainer</creatorcontrib><creatorcontrib>Niemann, Johanna</creatorcontrib><creatorcontrib>Reichel, Maximilian</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niekamp, Rainer</au><au>Niemann, Johanna</au><au>Reichel, Maximilian</au><au>Schröder, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data generation approach for surrogate models for magneto‐static simulations</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</abstract><doi>10.1002/pamm.202300119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4708-6804</orcidid><orcidid>https://orcid.org/0000-0002-0778-5168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_202300119
source Wiley Online Library Journals Frontfile Complete
title A data generation approach for surrogate models for magneto‐static simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20generation%20approach%20for%20surrogate%20models%20for%20magneto%E2%80%90static%20simulations&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Niekamp,%20Rainer&rft.date=2023-11&rft.volume=23&rft.issue=3&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202300119&rft_dat=%3Cwiley_cross%3EPAMM202300119%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true