A data generation approach for surrogate models for magneto‐static simulations
In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefor...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2023-11, Vol.23 (3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 23 |
creator | Niekamp, Rainer Niemann, Johanna Reichel, Maximilian Schröder, Jörg |
description | In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data. |
doi_str_mv | 10.1002/pamm.202300119 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202300119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202300119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqWwZe0LJPgnseNlVPEntaILWEcviROC4jiyU6HuOAJn5CR1WwTsWL3RaL6n0SB0TUlMCWE3IxgTM8I4IZSqEzSjgspIEkFP_-hzdOH9W8hTwckMrXNcwwS41YN2MHV2wDCOzkL1ihvrsN84Z1uYNDa21r0_mAbaQU_26-PTT4GpsO_Mpj_Q_hKdNdB7ffV95-jl7vZ58RAtn-4fF_kyqihTKqqTKmmAQyMSBoqp0LomJQkF01KmMihOgy-BaiWSTKaMpVmTaS51WSkl-BzFx7-Vs9473RSj6wy4bUFJsd-j2O9R_OwRAHUE3rteb_9JF-t8tfpldxb-Zcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data generation approach for surrogate models for magneto‐static simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</creator><creatorcontrib>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</creatorcontrib><description>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202300119</identifier><language>eng</language><ispartof>Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</cites><orcidid>0000-0002-4708-6804 ; 0000-0002-0778-5168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.202300119$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.202300119$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Niekamp, Rainer</creatorcontrib><creatorcontrib>Niemann, Johanna</creatorcontrib><creatorcontrib>Reichel, Maximilian</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><title>A data generation approach for surrogate models for magneto‐static simulations</title><title>Proceedings in applied mathematics and mechanics</title><description>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1OwzAUhC0EEqWwZe0LJPgnseNlVPEntaILWEcviROC4jiyU6HuOAJn5CR1WwTsWL3RaL6n0SB0TUlMCWE3IxgTM8I4IZSqEzSjgspIEkFP_-hzdOH9W8hTwckMrXNcwwS41YN2MHV2wDCOzkL1ihvrsN84Z1uYNDa21r0_mAbaQU_26-PTT4GpsO_Mpj_Q_hKdNdB7ffV95-jl7vZ58RAtn-4fF_kyqihTKqqTKmmAQyMSBoqp0LomJQkF01KmMihOgy-BaiWSTKaMpVmTaS51WSkl-BzFx7-Vs9473RSj6wy4bUFJsd-j2O9R_OwRAHUE3rteb_9JF-t8tfpldxb-Zcg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Niekamp, Rainer</creator><creator>Niemann, Johanna</creator><creator>Reichel, Maximilian</creator><creator>Schröder, Jörg</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4708-6804</orcidid><orcidid>https://orcid.org/0000-0002-0778-5168</orcidid></search><sort><creationdate>202311</creationdate><title>A data generation approach for surrogate models for magneto‐static simulations</title><author>Niekamp, Rainer ; Niemann, Johanna ; Reichel, Maximilian ; Schröder, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1299-d4c4fa3af642a929230d0b00615b757b0031a927a1e9648752258f8e37ebc9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Niekamp, Rainer</creatorcontrib><creatorcontrib>Niemann, Johanna</creatorcontrib><creatorcontrib>Reichel, Maximilian</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niekamp, Rainer</au><au>Niemann, Johanna</au><au>Reichel, Maximilian</au><au>Schröder, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data generation approach for surrogate models for magneto‐static simulations</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.</abstract><doi>10.1002/pamm.202300119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4708-6804</orcidid><orcidid>https://orcid.org/0000-0002-0778-5168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_202300119 |
source | Wiley Online Library Journals Frontfile Complete |
title | A data generation approach for surrogate models for magneto‐static simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20generation%20approach%20for%20surrogate%20models%20for%20magneto%E2%80%90static%20simulations&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Niekamp,%20Rainer&rft.date=2023-11&rft.volume=23&rft.issue=3&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202300119&rft_dat=%3Cwiley_cross%3EPAMM202300119%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |