A data generation approach for surrogate models for magneto‐static simulations

In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2023-11, Vol.23 (3), p.n/a
Hauptverfasser: Niekamp, Rainer, Niemann, Johanna, Reichel, Maximilian, Schröder, Jörg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.202300119