Remarks on a modified mixed least‐squares finite element formulation for small strain elasto‐plasticity

In this contribution a mixed least‐squares (LS) finite element formulation for rate‐independent elasto‐plasticity is presented within the framework of small deformations. Due to kink‐like points in the elasto‐plastic least‐squares functional, the variational approach yields to a discontinuous first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2017-12, Vol.17 (1), p.311-312
Hauptverfasser: Igelbüscher, Maximilian, Schwarz, Alexander, Steeger, Karl, Schröder, Jörg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this contribution a mixed least‐squares (LS) finite element formulation for rate‐independent elasto‐plasticity is presented within the framework of small deformations. Due to kink‐like points in the elasto‐plastic least‐squares functional, the variational approach yields to a discontinuous first variation and leads to problems by applying the standard Newton method. The proposed modification avoids this problem and guarantees the continuity of the modified weak form. We consider a least‐squares formulation, given through the balance of momentum, the constitutive equation and the consideration of an additional redundant stress symmetry condition, as a basis for the approach of a modification of the first variation. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.201710125