DG and hp-DG for highly indefinite Helmholtz problems
We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2013-12, Vol.13 (1), p.443-444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 1 |
container_start_page | 443 |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 13 |
creator | Melenk, Jens Markus Parsania, Asieh Sauter, Stefan |
description | We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.201310215 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201310215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201310215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1275-6d600be11953ae8c92bf2e1fc88a8c1237c44d11f81200a26641f0b867a4fc453</originalsourceid><addsrcrecordid>eNqFj8FLwzAUh4MoOKdXz_0HOt9L2qQ9jqmbbFPBieAlpG1io-1aksKcf70dk7Gbp_c7fN-Dj5BrhBEC0JtW1fWIAjIEivEJGSBHEQrgeHq0z8mF9589j5zBgMS300Cti6Bsw36ZxgWl_SirbWDXhTZ2bTsdzHRVl03V_QSta7JK1_6SnBlVeX31d4fk9f5uNZmFi6fpw2S8CHOkIg55wQEyjZjGTOkkT2lmqEaTJ4lKeoSJPIoKRJMgBVCU8wgNZAkXKjJ5FLMhGe3_5q7x3mkjW2dr5bYSQe6i5S5aHqJ7Id0LG1vp7T-0fB4vl8duuHet7_T3wVXuS3LBRCzfHqcyfcH3FUZzOWe_He1o1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DG and hp-DG for highly indefinite Helmholtz problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Melenk, Jens Markus ; Parsania, Asieh ; Sauter, Stefan</creator><creatorcontrib>Melenk, Jens Markus ; Parsania, Asieh ; Sauter, Stefan</creatorcontrib><description>We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201310215</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2013-12, Vol.13 (1), p.443-444</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1275-6d600be11953ae8c92bf2e1fc88a8c1237c44d11f81200a26641f0b867a4fc453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201310215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201310215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Melenk, Jens Markus</creatorcontrib><creatorcontrib>Parsania, Asieh</creatorcontrib><creatorcontrib>Sauter, Stefan</creatorcontrib><title>DG and hp-DG for highly indefinite Helmholtz problems</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFj8FLwzAUh4MoOKdXz_0HOt9L2qQ9jqmbbFPBieAlpG1io-1aksKcf70dk7Gbp_c7fN-Dj5BrhBEC0JtW1fWIAjIEivEJGSBHEQrgeHq0z8mF9589j5zBgMS300Cti6Bsw36ZxgWl_SirbWDXhTZ2bTsdzHRVl03V_QSta7JK1_6SnBlVeX31d4fk9f5uNZmFi6fpw2S8CHOkIg55wQEyjZjGTOkkT2lmqEaTJ4lKeoSJPIoKRJMgBVCU8wgNZAkXKjJ5FLMhGe3_5q7x3mkjW2dr5bYSQe6i5S5aHqJ7Id0LG1vp7T-0fB4vl8duuHet7_T3wVXuS3LBRCzfHqcyfcH3FUZzOWe_He1o1g</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Melenk, Jens Markus</creator><creator>Parsania, Asieh</creator><creator>Sauter, Stefan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201312</creationdate><title>DG and hp-DG for highly indefinite Helmholtz problems</title><author>Melenk, Jens Markus ; Parsania, Asieh ; Sauter, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1275-6d600be11953ae8c92bf2e1fc88a8c1237c44d11f81200a26641f0b867a4fc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Melenk, Jens Markus</creatorcontrib><creatorcontrib>Parsania, Asieh</creatorcontrib><creatorcontrib>Sauter, Stefan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melenk, Jens Markus</au><au>Parsania, Asieh</au><au>Sauter, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DG and hp-DG for highly indefinite Helmholtz problems</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2013-12</date><risdate>2013</risdate><volume>13</volume><issue>1</issue><spage>443</spage><epage>444</epage><pages>443-444</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.201310215</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2013-12, Vol.13 (1), p.443-444 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_201310215 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals |
title | DG and hp-DG for highly indefinite Helmholtz problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DG%20and%20hp-DG%20for%20highly%20indefinite%20Helmholtz%20problems&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Melenk,%20Jens%20Markus&rft.date=2013-12&rft.volume=13&rft.issue=1&rft.spage=443&rft.epage=444&rft.pages=443-444&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201310215&rft_dat=%3Cwiley_cross%3EPAMM201310215%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |