DG and hp-DG for highly indefinite Helmholtz problems
We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2013-12, Vol.13 (1), p.443-444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1617-7061 1617-7061 |
DOI: | 10.1002/pamm.201310215 |