DG and hp-DG for highly indefinite Helmholtz problems

We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2013-12, Vol.13 (1), p.443-444
Hauptverfasser: Melenk, Jens Markus, Parsania, Asieh, Sauter, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in ${\rm I\!R}^d, d \in \{2,3\}$. We prove that the DG‐method admits a unique solution under much weaker conditions than for conventional Galerkin methods. It is shown that for the case of hp‐DGFEM the optimal convergence order estimate can be obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree p is at least O(log k). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.201310215