Model reduction in topology optimisation analysing the inner structure of sensitivity matrices

Topology optimisation models usually contain a great number of design variables and correspondingly lead to large matrices (pseudo load matrix and sensitivity matrix) which appear in sensitivity analysis. We apply singular value decomposition (SVD) to these matrices to analyse their inner structure....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2010-12, Vol.10 (1), p.535-536
Hauptverfasser: Gerzen, Nikolai, Barthold, Franz-Joseph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topology optimisation models usually contain a great number of design variables and correspondingly lead to large matrices (pseudo load matrix and sensitivity matrix) which appear in sensitivity analysis. We apply singular value decomposition (SVD) to these matrices to analyse their inner structure. Based on the obtained information, we perform model reduction by transformation of the design variables into a lower‐dimensional space. Numerical examples illustrate the advocated theoretical concept. Reasonable results are obtained, based on only a fraction of all design variables. (© 2010 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.201010260