Combinatorial preconditioners for scalar elliptic finite-element problems

We present a new preconditioner for linear systems arising from finite‐elements discretizations of scalar elliptic partial differential equations. The solver is based on building a symmetric diagonally dominant (SDD) approximation of the stiffness matrix K. The approximation is built by approximatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1010805-1010806
Hauptverfasser: Avron, Haim, Chen, Doron, Shklarski, Gil, Toledo, Sivan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new preconditioner for linear systems arising from finite‐elements discretizations of scalar elliptic partial differential equations. The solver is based on building a symmetric diagonally dominant (SDD) approximation of the stiffness matrix K. The approximation is built by approximating each element inside the collection {Ke } of element matrices by an SDD matrix Le. The SDD approximation L is built by assembling the collection {Le }. We then sparsify L using a graph algorithm, and use the sparsified matrix as a preconditioner. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.200700828