Combinatorial preconditioners for scalar elliptic finite-element problems
We present a new preconditioner for linear systems arising from finite‐elements discretizations of scalar elliptic partial differential equations. The solver is based on building a symmetric diagonally dominant (SDD) approximation of the stiffness matrix K. The approximation is built by approximatin...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1010805-1010806 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new preconditioner for linear systems arising from finite‐elements discretizations of scalar elliptic partial differential equations. The solver is based on building a symmetric diagonally dominant (SDD) approximation of the stiffness matrix K. The approximation is built by approximating each element inside the collection {Ke } of element matrices by an SDD matrix Le. The SDD approximation L is built by assembling the collection {Le }. We then sparsify L using a graph algorithm, and use the sparsified matrix as a preconditioner. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1617-7061 1617-7061 |
DOI: | 10.1002/pamm.200700828 |