Analysis of the blunting anti-wrapping strategy

Interval methods for ODEs often face two obstacles in practical computations: the dependency problem and the wrapping effect. Taylor model methods, which have been developed by Berz and his group, have recently attracted attention. By combining interval arithmetic with symbolic calculations, these m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1022901-1022902
Hauptverfasser: Jackson, Kenneth R., Nedialkov, Ned S., Neher, Markus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interval methods for ODEs often face two obstacles in practical computations: the dependency problem and the wrapping effect. Taylor model methods, which have been developed by Berz and his group, have recently attracted attention. By combining interval arithmetic with symbolic calculations, these methods suffer far less from the dependency problem than traditional interval methods for ODEs. By allowing nonconvex enclosure sets for the flow of a given initial value problem, Taylor model methods have also a high potential for suppressing the wrapping effect. Makino and Berz [1] advocate the so‐called blunting method. In this paper, we analyze the blunting method (as an interval method) for a linear model ODE. We compare its convergence behavior with that of the well‐known QR interval method. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.200700154