Numerical solution of a variational problem with L∞ functionals

We consider the problem which consists in finding an optimal Lipschitz extension to the domain Ω of functions that verify the restriction u = g on ∂Ω. This work deals with the numerical approximations of the problem in dimension two. Using a discretization procedure based on finite differences metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1060401-1060402
Hauptverfasser: Parente, Lisandro A., Aragone, Laura S., Lotito, Pablo A., Reyero, Gabriela F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem which consists in finding an optimal Lipschitz extension to the domain Ω of functions that verify the restriction u = g on ∂Ω. This work deals with the numerical approximations of the problem in dimension two. Using a discretization procedure based on finite differences method we obtain a large scale non smooth convex minimization problem, which is solved via Variable Metric Hibrid Proximal Point Method. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.200700095