Numerical solution of a variational problem with L∞ functionals
We consider the problem which consists in finding an optimal Lipschitz extension to the domain Ω of functions that verify the restriction u = g on ∂Ω. This work deals with the numerical approximations of the problem in dimension two. Using a discretization procedure based on finite differences metho...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1060401-1060402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem which consists in finding an optimal Lipschitz extension to the domain Ω of functions that verify the restriction u = g on ∂Ω. This work deals with the numerical approximations of the problem in dimension two. Using a discretization procedure based on finite differences method we obtain a large scale non smooth convex minimization problem, which is solved via Variable Metric Hibrid Proximal Point Method. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1617-7061 1617-7061 |
DOI: | 10.1002/pamm.200700095 |