Hyperbolicity, stability and monodromy of dynamical systems

We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1030101-1030102
1. Verfasser: Arai, Zin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030102
container_issue 1
container_start_page 1030101
container_title Proceedings in applied mathematics and mechanics
container_volume 7
creator Arai, Zin
description We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pamm.200700078
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_200700078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3FFT7FFX_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWKtb1_MDnPqS2GSCq1KcVmjVRUV3IZ8QnXTKpKD5951SKd25eNy7uOfBQegWwwgDkPuNinFEADj0V52hAWaYlxwYPj_pl-gqpa9-jxmFAXqc543rdNsEE7b5rkhbpUPT10KtbRHbdWu7Nuai9YXNaxWDUU2Rctq6mK7RhVdNcjd_OUTv9dNqOi8Xr7Pn6WRRGkx4VbLKgLbYigfnFeaUWuGtAKJ5xYXQlcAUjGbEGk08UO2tB2zdWDFSgdeaDtHo8Nd0bUqd83LThai6LDHIvbrcq8ujeg-IA_ATGpf_Wcu3yXJ5ypYHNvSOv0dWdd-SccrH8uNlJmldr3hdf0pCd9dMbdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolicity, stability and monodromy of dynamical systems</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arai, Zin</creator><creatorcontrib>Arai, Zin</creatorcontrib><description>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.200700078</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1030101-1030102</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.200700078$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.200700078$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Arai, Zin</creatorcontrib><title>Hyperbolicity, stability and monodromy of dynamical systems</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEURYMoWKtb1_MDnPqS2GSCq1KcVmjVRUV3IZ8QnXTKpKD5951SKd25eNy7uOfBQegWwwgDkPuNinFEADj0V52hAWaYlxwYPj_pl-gqpa9-jxmFAXqc543rdNsEE7b5rkhbpUPT10KtbRHbdWu7Nuai9YXNaxWDUU2Rctq6mK7RhVdNcjd_OUTv9dNqOi8Xr7Pn6WRRGkx4VbLKgLbYigfnFeaUWuGtAKJ5xYXQlcAUjGbEGk08UO2tB2zdWDFSgdeaDtHo8Nd0bUqd83LThai6LDHIvbrcq8ujeg-IA_ATGpf_Wcu3yXJ5ypYHNvSOv0dWdd-SccrH8uNlJmldr3hdf0pCd9dMbdg</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Arai, Zin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200712</creationdate><title>Hyperbolicity, stability and monodromy of dynamical systems</title><author>Arai, Zin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arai, Zin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Zin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolicity, stability and monodromy of dynamical systems</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2007-12</date><risdate>2007</risdate><volume>7</volume><issue>1</issue><spage>1030101</spage><epage>1030102</epage><pages>1030101-1030102</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.200700078</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1030101-1030102
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_200700078
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
title Hyperbolicity, stability and monodromy of dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolicity,%20stability%20and%20monodromy%20of%20dynamical%20systems&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Arai,%20Zin&rft.date=2007-12&rft.volume=7&rft.issue=1&rft.spage=1030101&rft.epage=1030102&rft.pages=1030101-1030102&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.200700078&rft_dat=%3Cistex_cross%3Eark_67375_WNG_3FFT7FFX_2%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true