Hyperbolicity, stability and monodromy of dynamical systems
We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dim...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1030101-1030102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1030102 |
---|---|
container_issue | 1 |
container_start_page | 1030101 |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 7 |
creator | Arai, Zin |
description | We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.200700078 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_200700078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3FFT7FFX_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWKtb1_MDnPqS2GSCq1KcVmjVRUV3IZ8QnXTKpKD5951SKd25eNy7uOfBQegWwwgDkPuNinFEADj0V52hAWaYlxwYPj_pl-gqpa9-jxmFAXqc543rdNsEE7b5rkhbpUPT10KtbRHbdWu7Nuai9YXNaxWDUU2Rctq6mK7RhVdNcjd_OUTv9dNqOi8Xr7Pn6WRRGkx4VbLKgLbYigfnFeaUWuGtAKJ5xYXQlcAUjGbEGk08UO2tB2zdWDFSgdeaDtHo8Nd0bUqd83LThai6LDHIvbrcq8ujeg-IA_ATGpf_Wcu3yXJ5ypYHNvSOv0dWdd-SccrH8uNlJmldr3hdf0pCd9dMbdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolicity, stability and monodromy of dynamical systems</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arai, Zin</creator><creatorcontrib>Arai, Zin</creatorcontrib><description>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.200700078</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1030101-1030102</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.200700078$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.200700078$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Arai, Zin</creatorcontrib><title>Hyperbolicity, stability and monodromy of dynamical systems</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEURYMoWKtb1_MDnPqS2GSCq1KcVmjVRUV3IZ8QnXTKpKD5951SKd25eNy7uOfBQegWwwgDkPuNinFEADj0V52hAWaYlxwYPj_pl-gqpa9-jxmFAXqc543rdNsEE7b5rkhbpUPT10KtbRHbdWu7Nuai9YXNaxWDUU2Rctq6mK7RhVdNcjd_OUTv9dNqOi8Xr7Pn6WRRGkx4VbLKgLbYigfnFeaUWuGtAKJ5xYXQlcAUjGbEGk08UO2tB2zdWDFSgdeaDtHo8Nd0bUqd83LThai6LDHIvbrcq8ujeg-IA_ATGpf_Wcu3yXJ5ypYHNvSOv0dWdd-SccrH8uNlJmldr3hdf0pCd9dMbdg</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Arai, Zin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200712</creationdate><title>Hyperbolicity, stability and monodromy of dynamical systems</title><author>Arai, Zin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1278-68c0bd1d94efa1733d9fd902b78799b89130cb62dcb2f03bfdf01de5a6280fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arai, Zin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Zin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolicity, stability and monodromy of dynamical systems</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2007-12</date><risdate>2007</risdate><volume>7</volume><issue>1</issue><spage>1030101</spage><epage>1030102</epage><pages>1030101-1030102</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.200700078</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1030101-1030102 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_200700078 |
source | Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
title | Hyperbolicity, stability and monodromy of dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolicity,%20stability%20and%20monodromy%20of%20dynamical%20systems&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Arai,%20Zin&rft.date=2007-12&rft.volume=7&rft.issue=1&rft.spage=1030101&rft.epage=1030102&rft.pages=1030101-1030102&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.200700078&rft_dat=%3Cistex_cross%3Eark_67375_WNG_3FFT7FFX_2%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |