Hyperbolicity, stability and monodromy of dynamical systems
We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dim...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1030101-1030102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1617-7061 1617-7061 |
DOI: | 10.1002/pamm.200700078 |