Hyperbolicity, stability and monodromy of dynamical systems

We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1030101-1030102
1. Verfasser: Arai, Zin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a rigorous computational method for proving uniform hyperbolicity of dynamical systems. Besides finding structurally stable parameters, the algorithm can also be applied for the computation of the monodromy of dynamical systems. With this algorithm, we prove that the topology of the 2‐dimensional generalization of the Mandelbrot set is totally different from that of the original Mandelbrot set. Furthermore, we show that the monodromy of the complex Hénon map can be used to determine the dynamics of the real Hénon map. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.200700078