A C 0 finite element method for the biharmonic problem without extrinsic penalization

A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2014-07, Vol.30 (4), p.1254-1278
Hauptverfasser: Gazi Karakoc, S. Battal, Neilan, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014
ISSN:0749-159X
1098-2426
DOI:10.1002/num.21868