A block preconditioning technique for the streamfunction-vorticity formulation of the Navier-Stokes equations

Iterative methods of Krylov‐subspace type can be very effective solvers for matrix systems resulting from partial differential equations if appropriate preconditioning is employed. We describe and test block preconditioners based on a Schur complement approximation which uses a multigrid method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2012-05, Vol.28 (3), p.888-898
Hauptverfasser: Fairag, Faisal A., Wathen, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iterative methods of Krylov‐subspace type can be very effective solvers for matrix systems resulting from partial differential equations if appropriate preconditioning is employed. We describe and test block preconditioners based on a Schur complement approximation which uses a multigrid method for finite element approximations of the linearized incompressible Navier‐Stokes equations in streamfunction and vorticity formulation. By using a Picard iteration, we use this technology to solve fully nonlinear Navier‐Stokes problems. The solvers which result scale very well with problem parameters. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011
ISSN:0749-159X
1098-2426
DOI:10.1002/num.20661