Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks

Segregated direct boundary‐domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar “Laplace” PDE with variable coefficient are formulated and analyzed for domains with interior cuts (cracks). The main results established in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2011-01, Vol.27 (1), p.121-140
Hauptverfasser: Chkadua, O., Mikhailov, S.E., Natroshvili, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segregated direct boundary‐domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar “Laplace” PDE with variable coefficient are formulated and analyzed for domains with interior cuts (cracks). The main results established in the paper are the BDIE equivalence to the original BVPs and invertibility of the BDIE operators in the corresponding Sobolev spaces. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010
ISSN:0749-159X
1098-2426
DOI:10.1002/num.20639