Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks
Segregated direct boundary‐domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar “Laplace” PDE with variable coefficient are formulated and analyzed for domains with interior cuts (cracks). The main results established in the...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2011-01, Vol.27 (1), p.121-140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Segregated direct boundary‐domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar “Laplace” PDE with variable coefficient are formulated and analyzed for domains with interior cuts (cracks). The main results established in the paper are the BDIE equivalence to the original BVPs and invertibility of the BDIE operators in the corresponding Sobolev spaces. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.20639 |