Approximating solutions to the Dirichlet problem in R n using one analytic function
A simpler proof is given of the result of (Whitley and Hromadka II, Numer Methods Partial Differential Eq 21 (2005) 905–917) that, under very mild conditions, any solution to a Dirichlet problem with given continuous boundary data can be approximated by a sum involving a single function of one compl...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2010-11, Vol.26 (6), p.1636-1641 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simpler proof is given of the result of (Whitley and Hromadka II, Numer Methods Partial Differential Eq 21 (2005) 905–917) that, under very mild conditions, any solution to a Dirichlet problem with given continuous boundary data can be approximated by a sum involving a single function of one complex variable; any analytic function not a polynomial can be used. This can be applied to give a method for the numerical solution of potential problems in dimension three or higher. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.20515 |