A fully Galerkin method for the damped generalized regularized long-wave (DGRLW) equation
In this article, a fully discrete Galerkin scheme based on a nonlinear Crank–Nicolson method to approximate the solution of the DGRLW equation is constructed. Some a priori bounds are proved as well as error estimates. Then, a linearized modification scheme by an extrapolation method is discussed. T...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2009-05, Vol.25 (3), p.668-684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a fully discrete Galerkin scheme based on a nonlinear Crank–Nicolson method to approximate the solution of the DGRLW equation is constructed. Some a priori bounds are proved as well as error estimates. Then, a linearized modification scheme by an extrapolation method is discussed. The two schemes are time second order convergence. The last part is devoted to some numerical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.20367 |