Jacobi elliptic function solutions of the (1 + 1)-dimensional dispersive long wave equation by Homotopy Perturbation Method

In this article, we try to obtain approximate Jacobi elliptic function solutions of the (1 + 1)‐dimensional long wave equation using Homotopy Perturbation Method. This method deforms a difficult problem into a simple problem which can be easily solved. In comparison with HPM, numerical methods leads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2008-11, Vol.24 (6), p.1361-1370
Hauptverfasser: Miansari, Me, Ganji, D.D., Miansari, Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we try to obtain approximate Jacobi elliptic function solutions of the (1 + 1)‐dimensional long wave equation using Homotopy Perturbation Method. This method deforms a difficult problem into a simple problem which can be easily solved. In comparison with HPM, numerical methods leads to inaccurate results when the equation intensively depends on time, while He's method overcome the above shortcomings completely and can therefore be widely applicable in engineering. As a result, we obtain the approximate solution of the (1 + 1)‐dimensional long wave equation with initial conditions. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008
ISSN:0749-159X
1098-2426
DOI:10.1002/num.20321