A stabilized Hermite spectral method for second-order differential equations in unbounded domains

A stabilized Hermite spectral method, which uses the Hermite polynomials as trial functions, is presented for the heat equation and the generalized Burgers equation in unbounded domains. In order to overcome instability that may occur in direct Hermite spectral methods, a time‐dependent scaling fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2007-09, Vol.23 (5), p.968-983
Hauptverfasser: Ma, Heping, Zhao, Tinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stabilized Hermite spectral method, which uses the Hermite polynomials as trial functions, is presented for the heat equation and the generalized Burgers equation in unbounded domains. In order to overcome instability that may occur in direct Hermite spectral methods, a time‐dependent scaling factor is employed in the Hermite expansions. The stability of the scheme is examined and optimal error estimates are derived. Numerical experiments are given to confirm the theoretical results.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007
ISSN:0749-159X
1098-2426
DOI:10.1002/num.20203