Exponential convergence and H-c multiquadric collocation method for partial differential equations
The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocate the approximate solution of PDEs. It is a truly meshless method as compared to some of the so‐called meshless or element‐free finite element methods. For the multiquadric and Gaussian RBFs, th...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2003-09, Vol.19 (5), p.571-594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocate the approximate solution of PDEs. It is a truly meshless method as compared to some of the so‐called meshless or element‐free finite element methods. For the multiquadric and Gaussian RBFs, there are two ways to make the solution converge—either by refining the mesh size h, or by increasing the shape parameter c. While the h‐scheme requires the increase of computational cost, the c‐scheme is performed without extra effort. In this paper we establish by numerical experiment the exponential error estimate ϵ ∼ O(λ√c̄h) where 0 < λ < 1. We also propose the use of residual error as an error indicator to optimize the selection of c. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 571–594, 2003 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.10062 |