Retracted: Stability analysis of blocky structure system using discontinuity layout optimization

The collapse mechanism identification and limit load calculation of block composite structures are essential tasks in practical engineering. In this work, the discontinuity layout optimization (DLO) is utilized to simulate a stable blocky system structure under static and pseudostatic loading by con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2020-12, Vol.121 (24), p.5766-5783
Hauptverfasser: Jia, Cangqin, Huang, Qiwu, Wang, Guihe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The collapse mechanism identification and limit load calculation of block composite structures are essential tasks in practical engineering. In this work, the discontinuity layout optimization (DLO) is utilized to simulate a stable blocky system structure under static and pseudostatic loading by considering soil–structure interaction effects. The program refers to the discretization of the system under consideration by utilizing the potential slip lines to connect nodes. Then, linear programming is applied to identify the critical layout. The DLO procedure is extended to mimic rotations in the approximate simulation of rotational and translational failures along boundaries, thus simulating the mechanism on the rotating block. The simulated failure mechanism and collapse load are consistent with the experimental observations and numerical modeling results. Furthermore, the procedure is applied to two potential practical applications: the stability analysis of a jointed rock slope and concrete masonry retaining wall. The results show that the DLO is a simple but scientific method for identifying the mechanism of the critical failure of blocky structures.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.6523