A posteriori error estimation for elliptic eigenproblems

An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well‐known inverse iteration in such a way that the associated system of linear equations is solved approximately by using a preconditioner. The error estimator is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2002-06, Vol.9 (4), p.263-279
1. Verfasser: Neymeyr, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well‐known inverse iteration in such a way that the associated system of linear equations is solved approximately by using a preconditioner. The error estimator is integrated in an adaptive multigrid algorithm to compute approximations of a modest number of the smallest eigenvalues together with the eigenfunctions of an elliptic differential operator. Error estimation is applied both within the actual finite element space (in order to estimate the iteration error) as well as in its hierarchical refinement of higher‐order elements (to estimate the discretization error) which gives rise to a balanced reduction of the iteration error and of the discretization error in the adaptive multigrid algorithm. Copyright © 2002 John Wiley & Sons, Ltd.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.272