Extension theorems for Stokes and Lamé equations for nearly incompressible media and their applications to numerical solution of problems with highly discontinuous coefficients
We prove extension theorems in the norms described by Stokes and Lamé operators for the three‐dimensional case with periodic boundary conditions. For the Lamé equations, we show that the extension theorem holds for nearly incompressible media, but may fail in the opposite limit, i.e. for case of abs...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2002-03, Vol.9 (2), p.115-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove extension theorems in the norms described by Stokes and Lamé operators for the three‐dimensional case with periodic boundary conditions. For the Lamé equations, we show that the extension theorem holds for nearly incompressible media, but may fail in the opposite limit, i.e. for case of absolutely compressible media. We study carefully the latter case and associate it with the Cosserat problem.
Extension theorems serve as an important tool in many applications, e.g. in domain decomposition and fictitious domain methods, and in analysis of finite element methods. We consider an application of established extension theorems to an efficient iterative solution technique for the isotropic linear elasticity equations for nearly incompressible media and for the Stokes equations with highly discontinuous coefficients. The iterative method involves a special choice for an initial guess and a preconditioner based on solving a constant coefficient problem. Such preconditioner allows the use of well‐known fast algorithms for preconditioning.
Under some natural assumptions on smoothness and topological properties of subdomains with small coefficients, we prove convergence of the simplest Richardson method uniform in the jump of coefficients. For the Lamé equations, the convergence is also uniform in the incompressible limit.
Our preliminary numerical results for two‐dimensional diffusion problems show fast convergence uniform in the jump and in the mesh size parameter. Copyright © 2002 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1070-5325 1099-1506 |
DOI: | 10.1002/nla.259 |