Matching preclusion and conditional matching preclusion for bipartite interconnection networks II: Cayley graphs generated by transposition trees and hyper-stars
The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. It is natural to look for obst...
Gespeichert in:
Veröffentlicht in: | Networks 2012-07, Vol.59 (4), p.357-364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. It is natural to look for obstruction sets beyond those induced by a single vertex. The conditional matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph with no isolated vertices that has no perfect matchings. In this companion paper of Cheng et al. (Networks (NET 1554)), we find these numbers for a number of popular interconnection networks including hypercubes, star graphs, Cayley graphs generated by transposition trees and hyper‐stars. © 2011 Wiley Periodicals, Inc. NETWORKS, 2011 |
---|---|
ISSN: | 0028-3045 1097-0037 |
DOI: | 10.1002/net.20441 |