Simultaneous embeddings of graphs as median and antimedian subgraphs

The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2010-09, Vol.56 (2), p.90-94
Hauptverfasser: Balakrishnan, K., Brešar, B., Kovše, M., Changat, M., Subhamathi, A.R., Klavžar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r > 2, there exists a connected graph H, such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G,J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H. © 2009 Wiley Periodicals, Inc. NETWORKS, 2010
ISSN:0028-3045
1097-0037
DOI:10.1002/net.20350