Glucose metabolism in RIF‐1 tumors after reduction in blood flow: An in Vivo 13 C and 31 P NMR study

Low pH appears to enhance the effectiveness of therapeutic hyperthermia. 13 C and 31 P NMR spectroscopy have been employed to examine the possibility that elevating glucose in a solid tumor while simultaneously reducing tumor blood flow would induce a more profound acidosis than either treatment alo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1994-09, Vol.32 (3), p.303-309
Hauptverfasser: Bhujwalla, Zaver M., Shungu, Dikoma C., Chatham, John C., Wehrle, Janna P., Glickson, Jerry D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low pH appears to enhance the effectiveness of therapeutic hyperthermia. 13 C and 31 P NMR spectroscopy have been employed to examine the possibility that elevating glucose in a solid tumor while simultaneously reducing tumor blood flow would induce a more profound acidosis than either treatment alone. When blood flow in RIF‐1 tumors was acutely reduced by administration of hydralazine and additional glucose was delivered locally by intratumoral injection, tumor acidosis (as determined by 31 P NMR spectroscopy) during the period of reduced blood flow was not enhanced, relative to administration of hydralarine alone. Tumor NTP/ P 1 ratios decreased significantly within 20 min of hydralazine administration, whether or not glucose was injected, although NTP/ P 1 ratios were slightly higher in tumors that received extra glucose. Tumor lactate concentrations were not significantly different in glucose‐supplemented tumors, despite glucose concentratlons that were 4 to 5 times higher. When the added glucose was labeled with 13 C, no correlation was detected between the pH in an individual tumor and the intensity of the 3‐[ 13 C]‐lactate resonance in the same tumor.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.1910320305