On the convergence of Jacobi‐Gauss collocation method for linear fractional delay differential equations

In this paper, we propose a convergent numerical method for solving linear fractional differential equations. We first convert the equation into an equivalent time‐dependent equation and then discretize it at the Jacobi‐Gauss collocation points. Using this method, we achieve a system of algebraic eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-01, Vol.44 (2), p.2237-2253
Hauptverfasser: Peykrayegan, N., Ghovatmand, M., Noori Skandari, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a convergent numerical method for solving linear fractional differential equations. We first convert the equation into an equivalent time‐dependent equation and then discretize it at the Jacobi‐Gauss collocation points. Using this method, we achieve a system of algebraic equations to approximate the solution of the original equation. Here, we gain the solution and its fractional derivative, simultaneously. We fully present the convergence analysis for the suggested method. We finally illustrate the efficiency of our method by solving some numerical examples.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6934