Homogenization of Maxwell's equations in dissipative bianisotropic media
We study the periodic homogenization of Maxwell's equations for dissipative bianisotropic media in the time domain, both in R3 and in a bounded domain with the perfect conductor boundary condition. We consider both local with respect to time (optical response region) and non‐local in time (allo...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2003-09, Vol.26 (14), p.1241-1253 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the periodic homogenization of Maxwell's equations for dissipative bianisotropic media in the time domain, both in R3 and in a bounded domain with the perfect conductor boundary condition. We consider both local with respect to time (optical response region) and non‐local in time (allowing dispersive effects) constitutive laws; in the non‐local case the explicit description of the homogenized coefficients is given in terms of the Laplace transform. The principal result of this work is the description of the asymptotic behaviour of the solutions of the considered problems as the period of the electromagnetic parameters tends to zero. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.420 |