The diffraction in a class of unbounded domains connected through a hole

In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2003-11, Vol.26 (16), p.1363-1389
Hauptverfasser: Shestopalov, Yu. V., Smirnov, Yu. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 16
container_start_page 1363
container_title Mathematical methods in the applied sciences
container_volume 26
creator Shestopalov, Yu. V.
Smirnov, Yu. G.
description In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.417
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_V05HJQWW_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-d828e88b91e9f3d50c0c670e5c304b0a18f27ea332695a369e6b0396d6a90cf13</originalsourceid><addsrcrecordid>eNp10M1LwzAYx_EgCs4X_Bdy8yCdT5o2aY5j6KZsijDdMaR5sdG2kaZD999bqXjz9MDDh9_hi9AFgSkBSK-bRk0zwg_QhIAQCck4O0QTIBySLCXZMTqJ8Q0ACkLSCVpuKouNd65Tuvehxb7FCutaxYiDw7u2DLvWWINNaJRvI9ahba3uh09fdWH3Wg28CrU9Q0dO1dGe_95T9Hx7s5kvk9Xj4m4-WyU6FZwnpkgLWxSlIFY4anLQoBkHm2sKWQmKFC7lVlGaMpEryoRlJVDBDFMCtCP0FF2Ou7oLMXbWyY_ON6rbSwLyJ4AcAsghwCCvRvnpa7v_j8n1ejbqZNQ-9vbrT6vuXTJOeS63Dwv5Avny_mm7lQX9BqA1akU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The diffraction in a class of unbounded domains connected through a hole</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shestopalov, Yu. V. ; Smirnov, Yu. G.</creator><creatorcontrib>Shestopalov, Yu. V. ; Smirnov, Yu. G.</creatorcontrib><description>In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.417</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>integral equation ; integral operator-valued function</subject><ispartof>Mathematical methods in the applied sciences, 2003-11, Vol.26 (16), p.1363-1389</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-d828e88b91e9f3d50c0c670e5c304b0a18f27ea332695a369e6b0396d6a90cf13</citedby><cites>FETCH-LOGICAL-c2977-d828e88b91e9f3d50c0c670e5c304b0a18f27ea332695a369e6b0396d6a90cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shestopalov, Yu. V.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><title>The diffraction in a class of unbounded domains connected through a hole</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>integral equation</subject><subject>integral operator-valued function</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYx_EgCs4X_Bdy8yCdT5o2aY5j6KZsijDdMaR5sdG2kaZD999bqXjz9MDDh9_hi9AFgSkBSK-bRk0zwg_QhIAQCck4O0QTIBySLCXZMTqJ8Q0ACkLSCVpuKouNd65Tuvehxb7FCutaxYiDw7u2DLvWWINNaJRvI9ahba3uh09fdWH3Wg28CrU9Q0dO1dGe_95T9Hx7s5kvk9Xj4m4-WyU6FZwnpkgLWxSlIFY4anLQoBkHm2sKWQmKFC7lVlGaMpEryoRlJVDBDFMCtCP0FF2Ou7oLMXbWyY_ON6rbSwLyJ4AcAsghwCCvRvnpa7v_j8n1ejbqZNQ-9vbrT6vuXTJOeS63Dwv5Avny_mm7lQX9BqA1akU</recordid><startdate>20031110</startdate><enddate>20031110</enddate><creator>Shestopalov, Yu. V.</creator><creator>Smirnov, Yu. G.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031110</creationdate><title>The diffraction in a class of unbounded domains connected through a hole</title><author>Shestopalov, Yu. V. ; Smirnov, Yu. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-d828e88b91e9f3d50c0c670e5c304b0a18f27ea332695a369e6b0396d6a90cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>integral equation</topic><topic>integral operator-valued function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shestopalov, Yu. V.</creatorcontrib><creatorcontrib>Smirnov, Yu. G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shestopalov, Yu. V.</au><au>Smirnov, Yu. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The diffraction in a class of unbounded domains connected through a hole</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2003-11-10</date><risdate>2003</risdate><volume>26</volume><issue>16</issue><spage>1363</spage><epage>1389</epage><pages>1363-1389</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.417</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2003-11, Vol.26 (16), p.1363-1389
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_417
source Wiley Online Library Journals Frontfile Complete
subjects integral equation
integral operator-valued function
title The diffraction in a class of unbounded domains connected through a hole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20diffraction%20in%20a%20class%20of%20unbounded%20domains%20connected%20through%20a%20hole&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shestopalov,%20Yu.%20V.&rft.date=2003-11-10&rft.volume=26&rft.issue=16&rft.spage=1363&rft.epage=1389&rft.pages=1363-1389&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.417&rft_dat=%3Cistex_cross%3Eark_67375_WNG_V05HJQWW_8%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true