The diffraction in a class of unbounded domains connected through a hole
In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2003-11, Vol.26 (16), p.1363-1389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.417 |