Time asymptotics for the polyharmonic wave equation in waveguides

Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2003-02, Vol.26 (3), p.193-212
1. Verfasser: Lesky, P. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 3
container_start_page 193
container_title Mathematical methods in the applied sciences
container_volume 26
creator Lesky, P. H.
description Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.351
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FHGWG6DP_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</originalsourceid><addsrcrecordid>eNp1z81LwzAYx_EgCs4p_gu9iAfpzEuTNMcxXSds6mGyY8jSxEX7MpPO2f_eakVPnh54-PCDLwDnCI4QhPi6LNWIUHQABggKEaOEs0MwgIjDOMEoOQYnIbxACFOE8ACMl640kQptuW3qxukQ2dpHzcZE27poN8qXdeV0tFfvJjJvO9W4uopc9f143rnchFNwZFURzNnPHYKn6e1yMovnD9ndZDyPNU4FignWlK-hJakia04tR4RyrhkjCNncYosTmqaC5sLoXFiqEtt5wwWkHDNlyRBc9rva1yF4Y-XWu1L5ViIov8plVy678k5e9HKrglaF9arSLvzxJGFMUNG5q97tXWHa_-bkYjHuV-Neu9CYj1-t_KtknHAqV_eZnM6yVcZuHuWUfALYCXWC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><source>Wiley Online Library All Journals</source><creator>Lesky, P. H.</creator><creatorcontrib>Lesky, P. H.</creatorcontrib><description>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.351</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; resonances ; Sciences and techniques of general use ; wave equation ; waveguide</subject><ispartof>Mathematical methods in the applied sciences, 2003-02, Vol.26 (3), p.193-212</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14466959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesky, P. H.</creatorcontrib><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>resonances</subject><subject>Sciences and techniques of general use</subject><subject>wave equation</subject><subject>waveguide</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1z81LwzAYx_EgCs4p_gu9iAfpzEuTNMcxXSds6mGyY8jSxEX7MpPO2f_eakVPnh54-PCDLwDnCI4QhPi6LNWIUHQABggKEaOEs0MwgIjDOMEoOQYnIbxACFOE8ACMl640kQptuW3qxukQ2dpHzcZE27poN8qXdeV0tFfvJjJvO9W4uopc9f143rnchFNwZFURzNnPHYKn6e1yMovnD9ndZDyPNU4FignWlK-hJakia04tR4RyrhkjCNncYosTmqaC5sLoXFiqEtt5wwWkHDNlyRBc9rva1yF4Y-XWu1L5ViIov8plVy678k5e9HKrglaF9arSLvzxJGFMUNG5q97tXWHa_-bkYjHuV-Neu9CYj1-t_KtknHAqV_eZnM6yVcZuHuWUfALYCXWC</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Lesky, P. H.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200302</creationdate><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><author>Lesky, P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>resonances</topic><topic>Sciences and techniques of general use</topic><topic>wave equation</topic><topic>waveguide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesky, P. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesky, P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time asymptotics for the polyharmonic wave equation in waveguides</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2003-02</date><risdate>2003</risdate><volume>26</volume><issue>3</issue><spage>193</spage><epage>212</epage><pages>193-212</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.351</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2003-02, Vol.26 (3), p.193-212
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_351
source Wiley Online Library All Journals
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Partial differential equations
resonances
Sciences and techniques of general use
wave equation
waveguide
title Time asymptotics for the polyharmonic wave equation in waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20asymptotics%20for%20the%20polyharmonic%20wave%20equation%20in%20waveguides&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lesky,%20P.%20H.&rft.date=2003-02&rft.volume=26&rft.issue=3&rft.spage=193&rft.epage=212&rft.pages=193-212&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.351&rft_dat=%3Cistex_cross%3Eark_67375_WNG_FHGWG6DP_F%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true