Time asymptotics for the polyharmonic wave equation in waveguides
Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2003-02, Vol.26 (3), p.193-212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 3 |
container_start_page | 193 |
container_title | Mathematical methods in the applied sciences |
container_volume | 26 |
creator | Lesky, P. H. |
description | Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.351 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FHGWG6DP_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</originalsourceid><addsrcrecordid>eNp1z81LwzAYx_EgCs4p_gu9iAfpzEuTNMcxXSds6mGyY8jSxEX7MpPO2f_eakVPnh54-PCDLwDnCI4QhPi6LNWIUHQABggKEaOEs0MwgIjDOMEoOQYnIbxACFOE8ACMl640kQptuW3qxukQ2dpHzcZE27poN8qXdeV0tFfvJjJvO9W4uopc9f143rnchFNwZFURzNnPHYKn6e1yMovnD9ndZDyPNU4FignWlK-hJakia04tR4RyrhkjCNncYosTmqaC5sLoXFiqEtt5wwWkHDNlyRBc9rva1yF4Y-XWu1L5ViIov8plVy678k5e9HKrglaF9arSLvzxJGFMUNG5q97tXWHa_-bkYjHuV-Neu9CYj1-t_KtknHAqV_eZnM6yVcZuHuWUfALYCXWC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><source>Wiley Online Library All Journals</source><creator>Lesky, P. H.</creator><creatorcontrib>Lesky, P. H.</creatorcontrib><description>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.351</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; resonances ; Sciences and techniques of general use ; wave equation ; waveguide</subject><ispartof>Mathematical methods in the applied sciences, 2003-02, Vol.26 (3), p.193-212</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14466959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesky, P. H.</creatorcontrib><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>resonances</subject><subject>Sciences and techniques of general use</subject><subject>wave equation</subject><subject>waveguide</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1z81LwzAYx_EgCs4p_gu9iAfpzEuTNMcxXSds6mGyY8jSxEX7MpPO2f_eakVPnh54-PCDLwDnCI4QhPi6LNWIUHQABggKEaOEs0MwgIjDOMEoOQYnIbxACFOE8ACMl640kQptuW3qxukQ2dpHzcZE27poN8qXdeV0tFfvJjJvO9W4uopc9f143rnchFNwZFURzNnPHYKn6e1yMovnD9ndZDyPNU4FignWlK-hJakia04tR4RyrhkjCNncYosTmqaC5sLoXFiqEtt5wwWkHDNlyRBc9rva1yF4Y-XWu1L5ViIov8plVy678k5e9HKrglaF9arSLvzxJGFMUNG5q97tXWHa_-bkYjHuV-Neu9CYj1-t_KtknHAqV_eZnM6yVcZuHuWUfALYCXWC</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Lesky, P. H.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200302</creationdate><title>Time asymptotics for the polyharmonic wave equation in waveguides</title><author>Lesky, P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-32c57b0f38a3b75f713577c66311fdf2f2458895d9ecd9f5a4f57be7905726af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>resonances</topic><topic>Sciences and techniques of general use</topic><topic>wave equation</topic><topic>waveguide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesky, P. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesky, P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time asymptotics for the polyharmonic wave equation in waveguides</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2003-02</date><risdate>2003</risdate><volume>26</volume><issue>3</issue><spage>193</spage><epage>212</epage><pages>193-212</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.351</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2003-02, Vol.26 (3), p.193-212 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_351 |
source | Wiley Online Library All Journals |
subjects | Exact sciences and technology Mathematical analysis Mathematics Partial differential equations resonances Sciences and techniques of general use wave equation waveguide |
title | Time asymptotics for the polyharmonic wave equation in waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20asymptotics%20for%20the%20polyharmonic%20wave%20equation%20in%20waveguides&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lesky,%20P.%20H.&rft.date=2003-02&rft.volume=26&rft.issue=3&rft.spage=193&rft.epage=212&rft.pages=193-212&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.351&rft_dat=%3Cistex_cross%3Eark_67375_WNG_FHGWG6DP_F%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |