Time asymptotics for the polyharmonic wave equation in waveguides

Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2003-02, Vol.26 (3), p.193-212
1. Verfasser: Lesky, P. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.351