Time asymptotics for the polyharmonic wave equation in waveguides
Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2003-02, Vol.26 (3), p.193-212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω denote an unbounded domain in ℝn having the form Ω=ℝl×D with bounded cross‐section D⊂ℝn−l, and let m∈ℕ be fixed. This article considers solutions u to the scalar wave equation ∂ 2tu(t,x) +(−Δ)mu(t,x) = f(x)e−iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.351 |