A uniqueness condition for the polyharmonic equation in free space

Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 1990-04, Vol.12 (4), p.275-291
1. Verfasser: Lesky Jr, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 4
container_start_page 275
container_title Mathematical methods in the applied sciences
container_volume 12
creator Lesky Jr, P.
description Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.
doi_str_mv 10.1002/mma.1670120402
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_1670120402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA1670120402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3952-71787443b01bc58142b697714861d0c43e95864f5bbe6e0d273d4c6ee07581dd3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMmdhTHnPcex4bCtakFpgADFajuOohny0divovycQRMXE9IZ7zn3SJeQSYYQA9Lqu9Qi5AKTAgB6RAYKUMTLBj8kAUEDMKLJTchbCKwBkiHRAJuNo17jNzjY2hMi0TeG2rm2isvXRdmWjdVvtV9rXbeNMZDc7_Z26DvDWRmGtjT0nJ6Wugr34uUPyPLt5mt7Gi4f53XS8iE0iUxoLFJlgLMkBc5NmyGjOpRDIMo4FGJZYmWaclWmeW26hoCIpmOHWgujookiGZNT3Gt-G4G2p1t7V2u8VgvpaQHULqMMCnXDVC2sdjK5KrxvjwsGSXIhUso6TPffuKrv_p1Utl-M_P-LedWFrP35d7d8UF4lI1cv9XEnJHyfJcqYg-QSstXoR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A uniqueness condition for the polyharmonic equation in free space</title><source>Wiley Online Library Journals</source><creator>Lesky Jr, P.</creator><creatorcontrib>Lesky Jr, P.</creatorcontrib><description>Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1670120402</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Stuttgart: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Physics</subject><ispartof>Mathematical methods in the applied sciences, 1990-04, Vol.12 (4), p.275-291</ispartof><rights>Copyright © 1990 John Wiley &amp; Sons, Ltd</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3952-71787443b01bc58142b697714861d0c43e95864f5bbe6e0d273d4c6ee07581dd3</citedby><cites>FETCH-LOGICAL-c3952-71787443b01bc58142b697714861d0c43e95864f5bbe6e0d273d4c6ee07581dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.1670120402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.1670120402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19677594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesky Jr, P.</creatorcontrib><title>A uniqueness condition for the polyharmonic equation in free space</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMmdhTHnPcex4bCtakFpgADFajuOohny0divovycQRMXE9IZ7zn3SJeQSYYQA9Lqu9Qi5AKTAgB6RAYKUMTLBj8kAUEDMKLJTchbCKwBkiHRAJuNo17jNzjY2hMi0TeG2rm2isvXRdmWjdVvtV9rXbeNMZDc7_Z26DvDWRmGtjT0nJ6Wugr34uUPyPLt5mt7Gi4f53XS8iE0iUxoLFJlgLMkBc5NmyGjOpRDIMo4FGJZYmWaclWmeW26hoCIpmOHWgujookiGZNT3Gt-G4G2p1t7V2u8VgvpaQHULqMMCnXDVC2sdjK5KrxvjwsGSXIhUso6TPffuKrv_p1Utl-M_P-LedWFrP35d7d8UF4lI1cv9XEnJHyfJcqYg-QSstXoR</recordid><startdate>199004</startdate><enddate>199004</enddate><creator>Lesky Jr, P.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199004</creationdate><title>A uniqueness condition for the polyharmonic equation in free space</title><author>Lesky Jr, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3952-71787443b01bc58142b697714861d0c43e95864f5bbe6e0d273d4c6ee07581dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesky Jr, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesky Jr, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A uniqueness condition for the polyharmonic equation in free space</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>1990-04</date><risdate>1990</risdate><volume>12</volume><issue>4</issue><spage>275</spage><epage>291</epage><pages>275-291</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.</abstract><cop>Stuttgart</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.1670120402</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 1990-04, Vol.12 (4), p.275-291
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_1670120402
source Wiley Online Library Journals
subjects Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Physics
title A uniqueness condition for the polyharmonic equation in free space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20uniqueness%20condition%20for%20the%20polyharmonic%20equation%20in%20free%20space&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lesky%20Jr,%20P.&rft.date=1990-04&rft.volume=12&rft.issue=4&rft.spage=275&rft.epage=291&rft.pages=275-291&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1670120402&rft_dat=%3Cwiley_cross%3EMMA1670120402%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true