A uniqueness condition for the polyharmonic equation in free space

Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 1990-04, Vol.12 (4), p.275-291
1. Verfasser: Lesky Jr, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.1670120402