A uniqueness condition for the polyharmonic equation in free space
Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentc...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 1990-04, Vol.12 (4), p.275-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the polyharmonic wave equation ∂ t2u + (− Δ)mu = f in ℝn × (0, ∞) with time‐independent right‐hand side. We study the asymptotic behaviour of u (x, t) as t → ∞ and show that u(x, t) either converges or increases with order tα or In t as t → ∞. In the first case we study the limit \documentclass{article}\pagestyle{empty}\begin{document}$ u_0 \left({\bf x} \right) \colone \mathop {\lim }\limits_{t \to \infty } \,u\left({{\bf x},t} \right) $\end{document} and give a uniqueness condition that characterizes u0 among the solutions of the polyharmonic equation ( − Δ)mu = f in ℝn. Furthermore we prove in the case 2m ⩾ n that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.1670120402 |