Existence result and discontinuous finite element discretization for a plane stresses Hencky problem

We hereafter propose and analyse a discontinuous finite element method for a plane stress Hencky problem. For that purpose we begin by proving an existence result for the continuous problem. A kind of Green's formula between \documentclass{article}\pagestyle{empty}\begin{document}$$ BD\left(\Om...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 1989-03, Vol.11 (2), p.169-184
Hauptverfasser: Dhia, H. Ben, Hadhri, T., Nedelec, J. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We hereafter propose and analyse a discontinuous finite element method for a plane stress Hencky problem. For that purpose we begin by proving an existence result for the continuous problem. A kind of Green's formula between \documentclass{article}\pagestyle{empty}\begin{document}$$ BD\left(\Omega \right) = \left\{{u \in {\rm{L}}^1 \left(\Omega \right),\varepsilon _{ij} (u) \in M_1 \left(\Omega \right)} \right\}{\rm{and}}H\left(\Omega \right) = \left\{{\sigma \in L^\infty \left(\Omega \right),div\sigma \in {\rm{L}}^2 \left(\Omega \right)} \right\} $$\end{document} and other intermediate results that may be of independent interest are presented and established separately. Then we formulate the discretized problem, give an existence result for it and prove a result of weak convergence of a subsequence of discrete solutions to a solution of the continuous problem.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.1670110202