Existence result and discontinuous finite element discretization for a plane stresses Hencky problem
We hereafter propose and analyse a discontinuous finite element method for a plane stress Hencky problem. For that purpose we begin by proving an existence result for the continuous problem. A kind of Green's formula between \documentclass{article}\pagestyle{empty}\begin{document}$$ BD\left(\Om...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 1989-03, Vol.11 (2), p.169-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We hereafter propose and analyse a discontinuous finite element method for a plane stress Hencky problem. For that purpose we begin by proving an existence result for the continuous problem. A kind of Green's formula between
\documentclass{article}\pagestyle{empty}\begin{document}$$ BD\left(\Omega \right) = \left\{{u \in {\rm{L}}^1 \left(\Omega \right),\varepsilon _{ij} (u) \in M_1 \left(\Omega \right)} \right\}{\rm{and}}H\left(\Omega \right) = \left\{{\sigma \in L^\infty \left(\Omega \right),div\sigma \in {\rm{L}}^2 \left(\Omega \right)} \right\} $$\end{document}
and other intermediate results that may be of independent interest are presented and established separately. Then we formulate the discretized problem, give an existence result for it and prove a result of weak convergence of a subsequence of discrete solutions to a solution of the continuous problem. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.1670110202 |