On the Inversion of Generalized V‐Line Transform of a Vector Field in ℝ2$$ {\mathbb{R}}^2
This article studies the inverse problem of recovering a vector field supported in , the disk of radius centered at the origin, through a set of generalized broken ray/V‐line transforms, namely, longitudinal and transverse V‐line transforms. Geometrically, we work with broken lines that start from t...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2025-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article studies the inverse problem of recovering a vector field supported in , the disk of radius centered at the origin, through a set of generalized broken ray/V‐line transforms, namely, longitudinal and transverse V‐line transforms. Geometrically, we work with broken lines that start from the boundary of a disk and break at a fixed angle after traveling a distance along the diameter. We derive two inversion formulas to recover a vector field in from the knowledge of its longitudinal and transverse V‐line transforms over two different subsets of aforementioned broken lines in . |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10689 |