Hybrid hierarchical classifiers for categorization of medical documents
This article presents a study of the application of hierarchical classifiers based on the hierarchical mixtures of experts. In particular we present an extension of our work that explores the use of linear classifiers and a hybrid model that combines backpropagation neural networks with linear class...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ASIS annual meeting 2003-10, Vol.40 (1), p.65-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a study of the application of hierarchical classifiers based on the hierarchical mixtures of experts. In particular we present an extension of our work that explores the use of linear classifiers and a hybrid model that combines backpropagation neural networks with linear classifiers. We test this model using the UMLS as the classification structure and a subset of medical s from MEDLINE. Our results confirm that using the hierarchical structure of the classification vocabulary improves categorization performance. |
---|---|
ISSN: | 0044-7870 1550-8390 1550-8390 |
DOI: | 10.1002/meet.1450400108 |