Hybrid hierarchical classifiers for categorization of medical documents

This article presents a study of the application of hierarchical classifiers based on the hierarchical mixtures of experts. In particular we present an extension of our work that explores the use of linear classifiers and a hybrid model that combines backpropagation neural networks with linear class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ASIS annual meeting 2003-10, Vol.40 (1), p.65-70
Hauptverfasser: Ruiz, Miguel E., Srinivasan, Padmini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a study of the application of hierarchical classifiers based on the hierarchical mixtures of experts. In particular we present an extension of our work that explores the use of linear classifiers and a hybrid model that combines backpropagation neural networks with linear classifiers. We test this model using the UMLS as the classification structure and a subset of medical s from MEDLINE. Our results confirm that using the hierarchical structure of the classification vocabulary improves categorization performance.
ISSN:0044-7870
1550-8390
1550-8390
DOI:10.1002/meet.1450400108