Monte Carlo simulations of chains confined inside a cube
Self‐avoiding walks (SAWs) and random‐flight walks (RFWs) of various lengths embedded on a simple cubic lattice have been computer generated inside cubes of varying side. If B is the side of the confining cube, we define the reduced cube side size B0 as B0 = (B − 1)/ 1/2, where 1/2 is the root‐mean‐...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 1996-01, Vol.5 (1), p.93-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self‐avoiding walks (SAWs) and random‐flight walks (RFWs) of various lengths embedded on a simple cubic lattice have been computer generated inside cubes of varying side. If B is the side of the confining cube, we define the reduced cube side size B0 as B0 = (B − 1)/ 1/2, where 1/2 is the root‐mean‐square end‐to‐end distance of the non‐confined chains. Dimensionless diagrams are then given of the Monte Carlo estimates for the dimensions, the entropy, and the compressibility parameter PV/(kT) of the confined chains as a function of B0. The comparative behaviour of the confined SAWs and RFWs is established, scaling properties are examined, and the Monte Carlo estimates compared with theory when such theory is available. |
---|---|
ISSN: | 1022-1344 1521-3919 |
DOI: | 10.1002/mats.1996.040050107 |