Novel Supramolecular Hydrogels as Artificial Vitreous Substitutes

The possibility of employing self-healing gels as potential artificial vitreous substitutes is being explored. Advancement of traditional synthetic hydrogels as vitreous substitutes is hindered by their fragmentation upon injection into the vitreous cavity leading ultimately to inflammation. Prelimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular symposia. 2010-10, Vol.296 (1), p.229-232
Hauptverfasser: Lee-Wang, Hui Hui, Blakey, Idriss, Chirila, Traian V, Peng, Hui, Rasoul, Firas, Whittaker, Andrew K, Dargaville, Bronwin L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The possibility of employing self-healing gels as potential artificial vitreous substitutes is being explored. Advancement of traditional synthetic hydrogels as vitreous substitutes is hindered by their fragmentation upon injection into the vitreous cavity leading ultimately to inflammation. Preliminary work involved developing first generation self-healing gels, using amphiphilic tri-block copolymers of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PPG-PEG-PPG) as the building block. Eight linear self-healing gels are synthesized by tethering an ureidopyrimidinone system to synthetically modified PPG-PEG-PPG via the formation of a bis-urea as a linker. The reversible nature of the hydrogen bonds permits alteration of their physical properties by changing the environment, yet retaining desirable characteristics. Despite low solubility in water, these polymers demonstrated associating behaviour under the investigated conditions, which is encouraging. Future generations of self-healing gels should involve the selection of a more hydrophilic core and/or star-like polymers to facilitate gel formation and strengthen the network.
ISSN:1022-1360
1521-3900
DOI:10.1002/masy.201051032