On extensions of some Flugede-Putnam type theorems involving (p, k)-quasihyponormal, spectral, and dominant operators

A Hilbert space operator S is called (p, k)‐quasihyponormal if S *k ((S *S)p – (SS *)p )Sk ≥ 0 for an integer k ≥ 1 and 0 < p ≤ 1. In the present note, we consider (p, k)‐quasihyponormal operator S ∈ B (H) such that SX = XT for some X ∈ B (K,H) and prove the Fuglede–Putnam type theorems when the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2009-07, Vol.282 (7), p.1022-1032
Hauptverfasser: Tanahashi, Kotaro, Patel, S. M., Uchiyama, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Hilbert space operator S is called (p, k)‐quasihyponormal if S *k ((S *S)p – (SS *)p )Sk ≥ 0 for an integer k ≥ 1 and 0 < p ≤ 1. In the present note, we consider (p, k)‐quasihyponormal operator S ∈ B (H) such that SX = XT for some X ∈ B (K,H) and prove the Fuglede–Putnam type theorems when the adjoint of T ∈ B (K) is either (p, k)‐quasihyponormal or dominant or a spectral operator (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.200610787