On extensions of some Flugede-Putnam type theorems involving (p, k)-quasihyponormal, spectral, and dominant operators
A Hilbert space operator S is called (p, k)‐quasihyponormal if S *k ((S *S)p – (SS *)p )Sk ≥ 0 for an integer k ≥ 1 and 0 < p ≤ 1. In the present note, we consider (p, k)‐quasihyponormal operator S ∈ B (H) such that SX = XT for some X ∈ B (K,H) and prove the Fuglede–Putnam type theorems when the...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2009-07, Vol.282 (7), p.1022-1032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Hilbert space operator S is called (p, k)‐quasihyponormal if S *k ((S *S)p – (SS *)p )Sk ≥ 0 for an integer k ≥ 1 and 0 < p ≤ 1. In the present note, we consider (p, k)‐quasihyponormal operator S ∈ B (H) such that SX = XT for some X ∈ B (K,H) and prove the Fuglede–Putnam type theorems when the adjoint of T ∈ B (K) is either (p, k)‐quasihyponormal or dominant or a spectral operator (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200610787 |