Existence of a non-reflexive embedding with birational Gauss map for a projective variety

We study the relationship between the generic smoothness of the Gauss map and the reflexivity (with respect to the projective dual) for a projective variety defined over an algebraically closed field. The problem we discuss here is whether it is possible for a projective variety X in ℙN to re‐embed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2008-10, Vol.281 (10), p.1412-1417
Hauptverfasser: Fukasawa, Satoru, Kaji, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the relationship between the generic smoothness of the Gauss map and the reflexivity (with respect to the projective dual) for a projective variety defined over an algebraically closed field. The problem we discuss here is whether it is possible for a projective variety X in ℙN to re‐embed into some projective space ℙM so as to be non‐reflexive with generically smooth Gauss map. Our result is that the answer is affirmative under the assumption that X has dimension at least 3 and the differential of the Gauss map of X in ℙN is identically zero; hence the projective varietyX re‐embedded in ℙM yields a negative answer to Kleiman–Piene's question: Does the generic smoothness of the Gauss map imply reflexivity for a projective variety? A Fermat hypersurface in ℙN with suitable degree in positive characteristic is known to satisfy the assumption above. We give some new, other examples of X in ℙN satisfying the assumption. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.200610688