Ample vector bundles and Bordiga surfaces
Let X be a smooth complex projective variety and let Z ⊂ X be a smooth surface, which is the zero locus of a section of an ample vector bundle E of rank dimX – 2 ≥ 2 on X. Let H be an ample line bundle on X, whose restriction H Z to Z is a very ample line bundle and assume that (Z, H Z ) is a Bordig...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2007-02, Vol.280 (3), p.302-312 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a smooth complex projective variety and let Z ⊂ X be a smooth surface, which is the zero locus of a section of an ample vector bundle E of rank dimX – 2 ≥ 2 on X. Let H be an ample line bundle on X, whose restriction H Z to Z is a very ample line bundle and assume that (Z, H Z ) is a Bordiga surface, i.e., a rational surface having (P2, O P 2 (4)) as its minimal adjunction theoretic reduction. Triplets (X, E, H) as above are discussed and classified. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200410483 |