Symbol calculus and Fredholmness for a Banach algebra of convolution type operators with slowly oscillating and piecewise continuous data

A symbol calculus for the smallest Banach subalgebra A[SO,PC] of the Banach algebra B︁(Lnp(R)) of all bounded linear operators on the Lebesgue spaces Lnp(R) (1 < p < ∞, n ≥ 1) which contains all the convolution type operators Wa,b = aF−1bF with a ∈ [SO, PC]n×n and b ∈ [SOp, PCp]n×n is construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2004-06, Vol.269-270 (1), p.11-38
Hauptverfasser: Bastos, Maria Amélia, Bravo, António, Karlovich, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A symbol calculus for the smallest Banach subalgebra A[SO,PC] of the Banach algebra B︁(Lnp(R)) of all bounded linear operators on the Lebesgue spaces Lnp(R) (1 < p < ∞, n ≥ 1) which contains all the convolution type operators Wa,b = aF−1bF with a ∈ [SO, PC]n×n and b ∈ [SOp, PCp]n×n is constructed. Here [SO, PC]n×n means the C*‐algebra generated by all slowly oscillating (SO) and all piecewise continuous (PC) n × n matrix functions, and [SOp, PCp]n×n is a Fourier multiplier analogue of [SO, PC]n×n on Lp(R). As a result, a Fredholm criterion for the operators A ∈ A[SO,PC] is established. The study is based on the compactness of the commutators AWa,b − Wa,bA where A ∈ A[SO,PC], a ∈ SO, and b ∈ SOp, on the Allan‐Douglas local principle, and on the two projections theorem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.200310163