Symbol calculus and Fredholmness for a Banach algebra of convolution type operators with slowly oscillating and piecewise continuous data
A symbol calculus for the smallest Banach subalgebra A[SO,PC] of the Banach algebra B︁(Lnp(R)) of all bounded linear operators on the Lebesgue spaces Lnp(R) (1 < p < ∞, n ≥ 1) which contains all the convolution type operators Wa,b = aF−1bF with a ∈ [SO, PC]n×n and b ∈ [SOp, PCp]n×n is construc...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2004-06, Vol.269-270 (1), p.11-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A symbol calculus for the smallest Banach subalgebra A[SO,PC] of the Banach algebra B︁(Lnp(R)) of all bounded linear operators on the Lebesgue spaces Lnp(R) (1 < p < ∞, n ≥ 1) which contains all the convolution type operators Wa,b = aF−1bF with a ∈ [SO, PC]n×n and b ∈ [SOp, PCp]n×n is constructed. Here [SO, PC]n×n means the C*‐algebra generated by all slowly oscillating (SO) and all piecewise continuous (PC) n × n matrix functions, and [SOp, PCp]n×n is a Fourier multiplier analogue of [SO, PC]n×n on Lp(R). As a result, a Fredholm criterion for the operators A ∈ A[SO,PC] is established. The study is based on the compactness of the commutators AWa,b − Wa,bA where A ∈ A[SO,PC], a ∈ SO, and b ∈ SOp, on the Allan‐Douglas local principle, and on the two projections theorem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200310163 |